EconPapers    
Economics at your fingertips  
 

Numerical analysis for solving Allen-Cahn equation in 1D and 2D based on higher-order compact structure-preserving difference scheme

Kanyuta Poochinapan and Ben Wongsaijai

Applied Mathematics and Computation, 2022, vol. 434, issue C

Abstract: In this paper, we present a fourth-order difference scheme for solving the Allen-Cahn equation in both 1D and 2D. The proposed scheme is described by the compact difference operators together with the additional stabilized term. As a matter of fact, the Allen-Cahn equation contains the nonlinear reaction term which is eminently proved that numerical schemes are mostly nonlinear. To solve the complexity of nonlinearity, the Crank-Nicolson/Adams-Bashforth method is applied in order to deal with the nonlinear terms with the linear implicit scheme. The well-known energy-decaying property of the equation is maintained by the proposed scheme in the discrete sense. Additionally, the L∞ error analysis is carried out in the 1D case in a rigorous way to show that the method is fourth-order and second-order accuracy for the spatial and temporal step sizes, respectively. Concurrently, we examine the L2 and H1 error analysis for the scheme in the case of 2D. We consider the impact of the additional stabilized term on numerical solutions. The consequences confirm that an appropriate value of the stabilized term yields a significant improvement. Moreover, relevant results are carried out in the numerical simulations to illustrate the faithfulness of the present method by the confirmation of existing pieces of evidence.

Keywords: Allen-Cahn equation; Finite difference method; Discrete energy-decaying property; Convergence; Stability (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300322004489
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:434:y:2022:i:c:s0096300322004489

DOI: 10.1016/j.amc.2022.127374

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:434:y:2022:i:c:s0096300322004489