EconPapers    
Economics at your fingertips  
 

Optimal convergence analysis of a linearized second-order BDF-PPIFE method for semi-linear parabolic interface problems

Huaming Yi, Yanping Chen, Yang Wang and Yunqing Huang

Applied Mathematics and Computation, 2023, vol. 438, issue C

Abstract: The article proposes and analyzes the optimal error estimates of a second-order backward difference formula (BDF2) numerical scheme for the semi-linear parabolic interface problems. The partially penalized immersed finite element (PPIFE) methods are used for the spatial discretization to resolve discontinuity of the diffusion coefficient across the interface. The classical extrapolation method is adopted to treat the nonlinear term, which effectively avoids the complicated numerical calculation of the nonlinearity. Our error analysis is based on the corresponding time-discrete system, which neatly splits the error into two parts: the temporal discretization error and the spatial discretization error. Since the spatial discretization error is independent of time step size τ, we can unconditionally derive the optimal error estimates in both L2 norm and semi-H1 norm, while previous works always require the coupling condition of time step and space size. Numerical experiments are given to confirm the theoretical analysis.

Keywords: Convergence analysis; Backward difference formula; Time-discrete system; Immersed finite element; Parabolic interface problem (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300322006555
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:438:y:2023:i:c:s0096300322006555

DOI: 10.1016/j.amc.2022.127581

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:438:y:2023:i:c:s0096300322006555