EconPapers    
Economics at your fingertips  
 

An Equivalent Condition for Stability Analysis of LTI Systems with Bounded Time-invariant Delay

Roozbeh Abolpour, Alireza Khayatian, Maryam Dehghani and Alireza Rokhsari

Applied Mathematics and Computation, 2023, vol. 438, issue C

Abstract: This paper deals with the stability analysis of Linear Time-Invariant (LTI) systems in the presence of a bounded and time-invariant delay parameter. The paper extends the theory of characteristic quasi-polynomial to derive equivalent stability conditions. Based on the quasi-polynomial, a two-variate polynomial is defined and it is proved that system stability is equivalently guaranteed if all roots of the new polynomial are not allocated in a certain region of the right half plane (RHP). Moreover, the algorithm uses the proposed equivalent stability conditions to develop a set of implementable stability conditions based on the exposed edges theorem. The algorithm is applied to three simulation examples that admit some novel results for these systems. The first example shows the step-by-step procedure for the proposed algorithm. The second and the third ones compare various aspects of the proposed algorithm with some existing methods. Two hundred and fifty delay systems are randomly generated and the proposed algorithm is compared with them in terms of conservativeness and computational burden. The results reveal the superiority of the proposed method over the existing ones.

Keywords: Bounded time-invariant delay; characteristic quasi-polynomial; delay-independent stability analysis; Exposed edges theorem (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300322006580
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:438:y:2023:i:c:s0096300322006580

DOI: 10.1016/j.amc.2022.127585

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:438:y:2023:i:c:s0096300322006580