Nonclassical potential symmetry analysis and exact solutions for a thin film model of a perfectly soluble anti-surfactant solution
Subhankar Sil and
T. Raja Sekhar
Applied Mathematics and Computation, 2023, vol. 440, issue C
Abstract:
In this article, we construct exact solutions to a quasilinear system of hyperbolic partial differential equations which governs the dynamics of a thin film of a perfectly soluble anti-surfactant solution. The symmetry analysis for this system is performed first time in the literature to the best of our knowledge. In fact, we present a detailed and comprehensive study of symmetry analysis for the governing system and compute classical symmetries, nonclassical symmetries, nonlocal symmetries and nonclassical potential symmetries. Nonclassical potential symmetries appear to be very much useful in terms of obtaining several new hidden solutions of the system that can not be established by using classical symmetry reductions, nonclassical symmetry method, or potential symmetry analysis. By using the direct multipliers we demonstrate several conserved quantities of the governing system those yield associated nonlocally related potential systems to the given system. Further, we prove that the given system admits a nonlocal symmetry that arises from the symmetry-based method and consequently we obtain a family of exact solutions. We analyze the physical interpretation of some of the obtained solutions which include various soliton type solutions such as kink type solitons, breather type solitons, multiple solitons, singular kink type solitons and etc. Lastly, as an application, we analyze the evolutionary property of characteristic shock, weak discontinuity and collision between them by using one of the obtained solutions.
Keywords: Nonclassical symmetry; Nonclassical potential symmetry; Inverse potential system; Thin film model; Exact solution; Soliton solution (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300322007317
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:440:y:2023:i:c:s0096300322007317
DOI: 10.1016/j.amc.2022.127660
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().