EconPapers    
Economics at your fingertips  
 

On the selection of a better radial basis function and its shape parameter in interpolation problems

Chuin-Shan Chen, Amir Noorizadegan, D.L. Young and C.S. Chen

Applied Mathematics and Computation, 2023, vol. 442, issue C

Abstract: A traditional criterion to calculate the numerical stability of the interpolation matrix is its standard condition number. In this paper, it is observed that the effective condition number (κeff) is more informative than the standard condition number (κ) in investigating the numerical stability of the interpolation problem. While the κeff considers the function to be interpolated, the standard condition number only depends on the interpolation matrix. We propose using the shape parameter corresponding to the maximum κeff to obtain a small error in RBF interpolation. It is also observed that the κeff helps to predict the error behavior with respect to the type of the RBF, where the basis function with a higher effective condition number yields a smaller error. In the end, we conclude that the effective condition number links to the error with respect to the selection of a radial basis function, choosing its shape parameter, number of collocation points, and test function. To this end, ten test functions are interpolated using the multiquadric, Matern family, and Gaussian basis functions to show the advantage of the proposed method.

Keywords: Interpolation; Radial basis functions; Effective condition number; Shape parameter; Better kernel function (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300322007810
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:442:y:2023:i:c:s0096300322007810

DOI: 10.1016/j.amc.2022.127713

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:442:y:2023:i:c:s0096300322007810