EconPapers    
Economics at your fingertips  
 

Dynamic Modelling and Numerical Simulation of Formation Control for Intelligent Multi-agent System with Target Geometric Configuration

Ya Xiao and Linhua Zhou

Applied Mathematics and Computation, 2023, vol. 444, issue C

Abstract: Swarming motility arise very naturally in biological, physical, social sciences, etc. However, how to realize artificial intelligent self-organizing behavior is still an interesting and challenging task, especially for formation control of multiple agents with special geometric configuration. This work proposes a novel approach of formation control for a multi-agent system with target geometric configuration by combining dynamic model with graph realization. First, the global rigid graph is designed for the target formation pattern, then the interactive relationship and the expected distance between different intelligent agents are identified by the realization of graph. Secondly, the double-integrator dynamic model based on Newtonian mechanics is formulated for inherent driving force caused upon attenuation of potential energy, consistent of movement direction and speed. Thirdly, the stability of swarming motility is proved by Lyapunov’s second method, i.e., the movement of all agents will gradually stabilize to consistency of the movement direction and speed, and realize the target geometric configuration. Finally, numerical simulations of different geometric configurations are performed to verify the theoretical findings.

Keywords: Multi-agent system; Formation control; Dynamic model; Graph realization; Geometric Configuration (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300322008943
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:444:y:2023:i:c:s0096300322008943

DOI: 10.1016/j.amc.2022.127826

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:444:y:2023:i:c:s0096300322008943