The enriched quadrilateral overlapping finite elements for time-harmonic acoustics
Qiang Gui,
Wei Li and
Yingbin Chai
Applied Mathematics and Computation, 2023, vol. 451, issue C
Abstract:
The pronounced numerical dispersions and numerical anisotropy make solutions from the finite element model using low-order elements unreliable for the time-harmonic acoustic problems with fairly large wavenumber. In this work we propose a novel enriched quadrilateral overlapping elements for Helmholtz problems. In this scheme, the original overlapping elements are strengthened by the harmonic trigonometric functions stemming from the spectral techniques. Since all additional degrees of freedom are aligned on the vertex node of every overlapping element, the proposed method can be directly applied to the original finite element model without changing the mesh topology. Because of the enriched approximation space, the proposed method can significantly suppress the numerical dispersions with practically negligible numerical anisotropy, and can be more computationally efficient in providing comparable solution accuracy compared to the original scheme and the classic finite element method. Besides, the linear dependence issue is completely avoided and these enriched overlapping elements are distortion-insensitive. In this work, the original variational formulation is perturbed using the penalty method to impose the essential boundary conditions. Numerical experiments show that the developed method can reduce user interventions in mesh creation and adjustment, and is promising in practical engineering applications for time-harmonic acoustics.
Keywords: Overlapping finite element method; Helmholtz equation; Harmonic trigonometric functions; Linear independence (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S009630032300187X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:451:y:2023:i:c:s009630032300187x
DOI: 10.1016/j.amc.2023.128018
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().