EconPapers    
Economics at your fingertips  
 

Low-degree spline quasi-interpolants in the Bernstein basis

D. Barrera, S. Eddargani, M.J. Ibáñez and S. Remogna

Applied Mathematics and Computation, 2023, vol. 457, issue C

Abstract: In this paper we propose the construction of univariate low-degree quasi-interpolating splines in the Bernstein basis, considering C1 and C2 smoothness, specific polynomial reproduction properties and different sets of evaluation points. The splines are directly determined by setting their Bernstein–Bézier coefficients to appropriate combinations of the given data values. Moreover, we get quasi-interpolating splines with special properties, imposing particular requirements in case of free parameters. Finally, we provide numerical tests showing the performances of the proposed methods.

Keywords: Quasi-interpolation; Bernstein basis; Bézier-ordinates (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300323003193
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:457:y:2023:i:c:s0096300323003193

DOI: 10.1016/j.amc.2023.128150

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:457:y:2023:i:c:s0096300323003193