Improved Milne-Hamming Method for Resolving High-Order Uncertain Differential Equations
Junxian Kuang,
Mingliang Wang,
Jiajun Han and
Yuhong Sheng
Applied Mathematics and Computation, 2023, vol. 457, issue C
Abstract:
Uncertain systems can be modeled using high-order uncertain differential equations, however, which are often difficult to resolve via analytical methods, so what’s necessary is how to devise a numerical method. Based on the Milne-Hamming formula, this paper presented a new numerical solution—improved Milne-Hamming method. It showed that improved Milne-Hamming method is better than other numerical methods through numerical experiments. In addition, the analysis of its convergence, stability, and time complexity was given. After this, this method was implemented to acquire the expected value, extreme value, and integral of the solution. Finally, a concise conclusion was obtained.
Keywords: Improved Milne-Hamming method; Numerical solution; Uncertain differential equation (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300323003685
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:457:y:2023:i:c:s0096300323003685
DOI: 10.1016/j.amc.2023.128199
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().