EconPapers    
Economics at your fingertips  
 

Accurate derivatives approximations and applications to some elliptic PDEs using HOC methods

Jin Li, Zhilin Li and Kejia Pan

Applied Mathematics and Computation, 2023, vol. 459, issue C

Abstract: For many application problems that are modeled by partial differential equations (PDEs), not only it is important to obtain accurate approximations to the solutions, but also accurate approximations to the derivatives of the solutions. In this study, some new high order compact (HOC) finite difference schemes are derived to approximate the first and second derivatives of the solution to some elliptic PDEs using the numerical solution obtained from a HOC scheme applied to the same PDE. Convergence analysis for the computed derivatives is also presented to show that the order of the convergence is the same as that of the solution. The new HOC schemes for computing partial derivatives at both interior and boundary grid points take into account of the partial differential equations including the source term and/or the boundary conditions (Dirichlet, Neumann, or Robin). Fourth order accurate compact finite difference formulas with pre-computed coefficients and weights are developed for Poisson/Helmholtz PDEs, and code generated coefficients for diffusion-advection equations with constant coefficients. One important application is a new fourth-order compact scheme for solving incompressible Stokes equations with periodic boundary conditions.

Keywords: High order compact derivative computation; HOC schemes; Poisson/Helmholtz equation; Diffusion-advection equation; Stokes equations; Three Poisson equations approach (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300323004344
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:459:y:2023:i:c:s0096300323004344

DOI: 10.1016/j.amc.2023.128265

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:459:y:2023:i:c:s0096300323004344