EconPapers    
Economics at your fingertips  
 

Large deviation probabilities for the range of a d-dimensional supercritical branching random walk

Shuxiong Zhang

Applied Mathematics and Computation, 2024, vol. 462, issue C

Abstract: Let {Zn}n≥0 be a d-dimensional supercritical branching random walk started from the origin. Write Zn(S) for the number of particles located in a set S⊂Rd at time n. Denote by Rn:=inf⁡{ρ≥0:Zi({|x|≥ρ})=0,∀0≤i≤n} the radius of the minimal ball (centered at the origin) containing the range of {Zi}i≥0 up to time n. In this work, we show that under some mild conditions Rn/n converges in probability to some positive constant x⁎ as n→∞. Furthermore, we study its corresponding lower and upper deviation probabilities, i.e. the decay rates ofP(Rn≤xn)forx∈(0,x⁎);P(Rn≥xn)forx∈(x⁎,∞) as n→∞.

Keywords: Offspring law; Step size; Range; Maximum (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300323005131
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:462:y:2024:i:c:s0096300323005131

DOI: 10.1016/j.amc.2023.128344

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:462:y:2024:i:c:s0096300323005131