EconPapers    
Economics at your fingertips  
 

A low-rank and sparse enhanced Tucker decomposition approach for tensor completion

Chenjian Pan, Chen Ling, Hongjin He, Liqun Qi and Yanwei Xu

Applied Mathematics and Computation, 2024, vol. 465, issue C

Abstract: In this paper, we introduce a unified low-rank and sparse enhanced Tucker decomposition model for tensor completion. Our model possesses a sparse regularization term to promote a sparse core of the Tucker decomposition, which is beneficial for tensor data compression. Moreover, we enforce low-rank regularization terms on factor matrices of the Tucker decomposition for inducing the low-rankness of the tensor with a cheap computational cost. Numerically, we propose a customized splitting method with easy subproblems to solve the underlying model. It is remarkable that our model is able to deal with different types of real-world data sets, since it exploits the potential periodicity and inherent correlation properties appeared in tensors. A series of computational experiments on real-world data sets, including internet traffic data sets and color images, demonstrate that our model performs better than many existing state-of-the-art matricization and tensorization approaches in terms of achieving higher recovery accuracy.

Keywords: Tensor completion; Tucker decomposition; Nuclear norm; Internet traffic data; Image inpainting (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S009630032300601X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:465:y:2024:i:c:s009630032300601x

DOI: 10.1016/j.amc.2023.128432

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:465:y:2024:i:c:s009630032300601x