On the computation of intrinsic Proper Generalized Decomposition modes of parametric symmetric elliptic problems on Grassmann manifolds
Alejandro Bandera,
Soledad Fernández-García and
Macarena Gómez-Mármol
Applied Mathematics and Computation, 2024, vol. 470, issue C
Abstract:
In this work, we introduce an iterative optimization algorithm to obtain the intrinsic Proper Generalized Decomposition modes of elliptic partial differential equations. The main idea behind this procedure is to adapt the general Gradient Descent algorithm to the algebraic version of the intrinsic Proper Generalized Decomposition framework, and then to couple a one-dimensional case of the algorithm with a deflation algorithm in order to keep enriching the solution by computing further intrinsic Proper Generalized Decomposition modes. For this novel iterative optimization procedure, we present some numerical tests based on physical parametric problems, in which we obtain very promising results in comparison with the ones already presented in the literature. This supports the use of this procedure in order to obtain the intrinsic PGD modes of parametric symmetric problems.
Keywords: Proper Generalized Decomposition; Gradient descent; Grassmann manifold; Reduced order modeling; Symmetric elliptic problems (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300324000511
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:470:y:2024:i:c:s0096300324000511
DOI: 10.1016/j.amc.2024.128579
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().