EconPapers    
Economics at your fingertips  
 

DisPredict3.0: Prediction of intrinsically disordered regions/proteins using protein language model

Md Wasi Ul Kabir and Md Tamjidul Hoque

Applied Mathematics and Computation, 2024, vol. 472, issue C

Abstract: Intrinsically disordered proteins (IDPs) or protein regions (IDRs) do not have a stable three-dimensional structure, even though they exhibit important biological functions. They are structurally and functionally very different from ordered proteins and can cause many critical diseases. Accurate identification of disordered proteins/regions significantly impacts fields such as drug design, protein engineering, protein design, and related research. However, experimental identification of IDRs is complex and time-consuming, necessitating the development of an accurate and efficient computational method. The recent development of deep learning methods for protein language models shows the ability to learn evolutionary information from billions of protein sequences. This motivates us to develop a computational method, named DisPredict3.0, to predict proteins’ disordered regions (IDRs) using evolutionary information from a protein language model. Compared to the state-of-the-art method in the CAID (2018) assessment, DisPredict3.0 has an improvement of 2.51 %, 16.13 %, 17.98 %, and 11.94 % in terms of AUC, F1-score, MCC, and kappa, respectively. In addition, in the CAID-2 assessment (2022), DisPredict3.0 shows promising results and is ranked first for disorder residue prediction on the Disorder-NOX dataset. The DisPredict3.0 webserver is available at https://bmll.cs.uno.edu.

Keywords: Protein language models; Intrinsically disordered proteins; Predict disordered protein; Machine learning (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300324001024
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:472:y:2024:i:c:s0096300324001024

DOI: 10.1016/j.amc.2024.128630

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:472:y:2024:i:c:s0096300324001024