EconPapers    
Economics at your fingertips  
 

Computation of the resistance distance and the Kirchhoff index for the two types of claw-free cubic graphs

Muhammad Shoaib Sardar, Xiang-Feng Pan and Shou-Jun Xu

Applied Mathematics and Computation, 2024, vol. 473, issue C

Abstract: Let G be a simple connected graph with vertex set V(G) and edge set E(G). The resistance distance r(u,v) between two vertices u,v∈V(G) is the net effective resistance between them in the electric network constructed from G by replacing each edge with a unit resistor. This function is known to be a metric on the vertex-set of any graph. The sum of resistance distances between pairs of vertices in a G is called Kirchhoff index and is denoted by Kf(G). In this study, we will compute the resistance distance between pairs of vertices of string of diamonds and ring of diamonds by using some methods from electrical network theory such as series and parallel principles, the principle of elimination, the star-triangle transformation, and the delta-wye transformation. Then we determine the exact formulas for the Kirchhoff index of the string of diamonds and ring of diamonds.

Keywords: Resistance distance; Kirchhoff index; Claw-free cubic graphs; Star-triangle transformation; Delta-wye transformation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300324001425
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:473:y:2024:i:c:s0096300324001425

DOI: 10.1016/j.amc.2024.128670

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:473:y:2024:i:c:s0096300324001425