An efficient algorithm for Fantope-constrained sparse principal subspace estimation problem
Yong-Jin Liu,
Yuqi Wan and
Lanyu Lin
Applied Mathematics and Computation, 2024, vol. 475, issue C
Abstract:
The Fantope-constrained sparse principal subspace estimation problem is initially proposed by Vu et al. (Vu et al., 2013). This paper investigates a semismooth Newton based proximal point (Ppassn) algorithm for solving the equivalent form of this problem, where a semismooth Newton (Ssn) method is utilized to optimize the inner problems involved in the Ppassn algorithm. Under standard conditions, the Ppassn algorithm is proven to achieve global convergence and an asymptotic superlinear convergence rate. Computationally, we derive nontrivial expressions for the Fantope projection and its generalized Jacobian, which are key ingredients for the Ppassn algorithm. Some numerical results on synthetic and real data sets are presented to illustrate the effectiveness of the proposed Ppassn algorithm for large-scale problems and superiority over the alternating direction method of multipliers (ADMM).
Keywords: Fantope projection; Semismooth Newton algorithm; Proximal point algorithm; Generalized Jacobian (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300324001802
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:475:y:2024:i:c:s0096300324001802
DOI: 10.1016/j.amc.2024.128708
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().