EconPapers    
Economics at your fingertips  
 

Double fast algorithm for solving time-space fractional diffusion problems with spectral fractional Laplacian

Yi Yang and Jin Huang

Applied Mathematics and Computation, 2024, vol. 475, issue C

Abstract: This paper presents an efficient and concise double fast algorithm to solve high dimensional time-space fractional diffusion problems with spectral fractional Laplacian. We first establish semi-discrete scheme of time-space fractional diffusion equation, which uses linear finite element or fourth-order compact difference method combining with matrix transfer technique to approximate spectral fractional Laplacian. Then we introduce a fast time-stepping L1 scheme for time discretization. The proposed scheme can exactly evaluate fractional power of matrix and perform matrix-vector multiplication at per time level by using discrete sine transform, which doesn't need to resort to any iteration method and can significantly reduce computation cost and memory requirement. Further, we address stability and convergence analyses of full discrete scheme based on fast time-stepping L1 scheme on graded time mesh. Our error analysis shows that the choice of graded mesh factor ω=(2−α)/α shall give an optimal temporal convergence O(N−(2−α)) with N denoting the number of time mesh. Finally, ample numerical examples are delivered to illustrate our theoretical analysis and the efficiency of the suggested scheme.

Keywords: Fractional diffusion problem; Spectral fractional Laplacian; Finite element method; Compact difference method; Matrix transfer technique; Convergence analysis (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300324001875
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:475:y:2024:i:c:s0096300324001875

DOI: 10.1016/j.amc.2024.128715

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:475:y:2024:i:c:s0096300324001875