Multiple exponential stability for short memory fractional impulsive Cohen-Grossberg neural networks with time delays
Jinsen Zhang and
Xiaobing Nie
Applied Mathematics and Computation, 2025, vol. 486, issue C
Abstract:
Different from the existing multiple asymptotic stability or multiple Mittag-Leffler stability, the multiple exponential stability with explicit and faster convergence rate is addressed in this paper for short memory fractional-order impulsive Cohen-Grossberg neural networks with time delay. Firstly, ∏i=1n(2Hi+1) total equilibrium points of such n-neuron neural networks can be ensured via the known fixed point theorem. Then, by means of the theory of fractional-order differential equations, the methods of average impulsive interval and Lyapunov function, a series of sufficient conditions for determining the locally exponential stability of ∏i=1n(Hi+1) equilibrium points are obtained based on maximum norm, 1-norm and general q-norm (q=2n), respectively. This paper's research reveals the effects of impulsive function, impulsive interval, fractional order and time delay on the dynamic behaviors. Finally, four examples are proposed to demonstrate the effectiveness of theoretic achievements.
Keywords: Multiple exponential stability; Short memory fractional-order impulsive Cohen-Grossberg neural networks; Time delay (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300324005277
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:486:y:2025:i:c:s0096300324005277
DOI: 10.1016/j.amc.2024.129066
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().