Evolution of cooperation with asymmetric rewards
Yini Geng,
Yikang Lu,
Lijun Hong and
Lei Shi
Applied Mathematics and Computation, 2025, vol. 487, issue C
Abstract:
Rewards, as a form of positive reinforcement, effectively encourage cooperation. In this paper, we study a multi-population prisoner's dilemma game with asymmetric rewards, where agents in the same population play prisoner's dilemma game, and agents from the giver population can reward agents from the recipient population only if they make the same choice. In well-mixed populations, asymmetric rewards can facilitate cooperation. Similarly, asymmetric rewards on the regular square lattice can effectively prevent complete defection. In both well-mixed and structured populations, seemingly disadvantageous cooperative givers play an important role in the maintenance and spread of cooperation. Especially on lattice, cooperative givers with asymmetric rewards can be active in the system through diverse cases of cyclic dominance. Our findings provide deeper insights into the impact of asymmetry on cooperative behavior and the development of altruistic behavior in real-world scenarios.
Keywords: Cooperation; Asymmetric rewards; Evolutionary game; Cyclic dominance (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300324005368
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:487:y:2025:i:c:s0096300324005368
DOI: 10.1016/j.amc.2024.129075
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().