Superconvergence results for hypersingular integral equation of first kind by Chebyshev spectral projection methods
Saloni Gupta,
Arnab Kayal and
Moumita Mandal
Applied Mathematics and Computation, 2025, vol. 487, issue C
Abstract:
In this article, we propose Chebyshev spectral projection methods to solve the hypersingular integral equation of first kind. The presence of strong singularity in Hadamard sense in the first part of the integral equation makes it challenging to get superconvergence results. To overcome this, we transform the first kind hypersingular integral equation into a second kind integral equation. This is achieved by defining a bounded inverse of the hypersingular integral operator in some suitable Hilbert space. Using iterated Chebyshev spectral Galerkin method on the equivalent second kind integral equation, we obtain improved convergence of O(N−2r), where N is the highest degree of Chebyshev polynomials employed in the approximation space and r is the smoothness of the solution. Further, using commutativity of projection operator and inverse of the hypersingular integral operator, we are able to obtain superconvergence of O(N−3r) and O(N−4r), by Chebyshev spectral multi-Galerkin method (CSMGM) and iterated CSMGM, respectively. Finally, numerical examples are presented to verify our theoretical results.
Keywords: Hypersingular integral equation; Chebyshev polynomial; Spectral projection method; Superconvergence (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S009630032400554X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:487:y:2025:i:c:s009630032400554x
DOI: 10.1016/j.amc.2024.129093
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().