EconPapers    
Economics at your fingertips  
 

Radio labelling of two-branch trees

Devsi Bantva, Samir Vaidya and Sanming Zhou

Applied Mathematics and Computation, 2025, vol. 487, issue C

Abstract: A radio labelling of a graph G is a mapping f:V(G)→{0,1,2,…} such that |f(u)−f(v)|≥diam(G)+1−d(u,v) for every pair of distinct vertices u,v of G, where diam(G) is the diameter of G and d(u,v) is the distance between u and v in G. The radio number rn(G) of G is the smallest integer k such that G admits a radio labelling f with max⁡{f(v):v∈V(G)}=k. The weight of a tree T from a vertex v∈V(T) is the sum of the distances in T from v to all other vertices, and a vertex of T achieving the minimum weight is called a weight centre of T. It is known that any tree has one or two weight centres. A tree is called a two-branch tree if the removal of all its weight centres results in a forest with exactly two components. In this paper we obtain a sharp lower bound for the radio number of two-branch trees which improves a known lower bound for general trees. We also give a necessary and sufficient condition for this improved lower bound to be achieved. Using these results, we determine the radio number of two families of level-wise regular two-branch trees.

Keywords: Graph colouring; Radio labelling; Radio number; Trees; Level-wise regular trees (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300324005587
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:487:y:2025:i:c:s0096300324005587

DOI: 10.1016/j.amc.2024.129097

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:487:y:2025:i:c:s0096300324005587