EconPapers    
Economics at your fingertips  
 

Improving approximation accuracy in Godunov-type smoothed particle hydrodynamics methods

G.D. Rublev, A.N. Parshikov and S.A. Dyachkov

Applied Mathematics and Computation, 2025, vol. 488, issue C

Abstract: The study examines the origin of errors resulting from the approximation of the right hand sides of the Euler equations using the Godunov type contact method of smoothed particle hydrodynamics (CSPH). The analytical expression for the numerical shear viscosity in CSPH method is obtained. In our recent study the numerical viscosity was determined by comparing the numerical solution of momentum diffusion in the shear flow with theoretical one. In this study we deduce the analytical expression for the numerical viscosity which is found to be similar to numerical one, confirming the obtained results. To reduce numerical diffusion, diffusion limiters are typically applied to expressions for contact values of velocity and pressure, as well as higher-order reconstruction schemes. Based on the performed theoretical analysis, we propose a new method for correcting quantities at interparticle contacts in CSPH method, which can be easily extended to the MUSCL-type (Monotonic Upstream-centered Scheme for Conservation Laws) method. Original CSPH and MUSCL-SPH approaches and ones with aforementioned correction are compared.

Keywords: Smoothed particle hydrodynamics (SPH); Godunov-type SPH; CSPH; MUSCL-SPH; Numerical viscosity; Kernel gradient correction (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300324005897
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:488:y:2025:i:c:s0096300324005897

DOI: 10.1016/j.amc.2024.129128

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:488:y:2025:i:c:s0096300324005897