EconPapers    
Economics at your fingertips  
 

A step function based recursion method for 0/1 deep neural networks

Hui Zhang, Shenglong Zhou, Geoffrey Ye Li, Naihua Xiu and Yiju Wang

Applied Mathematics and Computation, 2025, vol. 488, issue C

Abstract: The deep neural network with step function activation (0/1 DNNs) is a fundamental composite model in deep learning which has high efficiency and robustness to outliers. However, due to the discontinuity and lacking subgradient information of the 0/1 DNNs model, prior researches are largely focused on designing continuous functions to approximate the step activation and developing continuous optimization methods. In this paper, by introducing two sets of network node variables into the 0/1 DNNs and by exploring the composite structure of the resulted model, the 0/1 DNNs is decomposed into a unary optimization model associated with the step function and three derivational optimization subproblems associated with the other variables. For the unary optimization model and two derivational optimization subproblems, we present a closed form solution, and for the third derivational optimization subproblem, we propose an efficient proximal method. Based on this, a globally convergent step function based recursion method for the 0/1 DNNs is developed. The efficiency and performance of the proposed algorithm are validated via theoretical analysis as well as some illustrative numerical examples on classifying MNIST, FashionMNIST and Cifar10 datasets.

Keywords: 0/1 DNNs; Step function; Separability; Recursion method (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300324005903
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:488:y:2025:i:c:s0096300324005903

DOI: 10.1016/j.amc.2024.129129

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:488:y:2025:i:c:s0096300324005903