Time-dependent strategy for improving aortic blood flow simulations with boundary control and data assimilation
Muhammad Adnan Anwar and
Jorge Tiago
Applied Mathematics and Computation, 2025, vol. 493, issue C
Abstract:
Understanding time-dependent blood flow dynamics in arteries is crucial for diagnosing and treating cardiovascular diseases. However, accurately predicting time-varying flow patterns requires integrating observational data with computational models in a dynamic environment. This study investigates the application of data assimilation and boundary optimization techniques to improve the accuracy of time-dependent blood flow simulations. We propose an integrated approach that combines data assimilation methods with boundary optimization strategies tailored for time-dependent cases. Our method aims to minimize the disparity between model predictions and observed data over time, thereby enhancing the fidelity of time-dependent blood flow simulations. Using synthetic time-series observational data with added noise, we validate our approach by comparing its predictions with the known exact solution, computing the L2-norm to demonstrate improved accuracy in time-dependent blood flow simulations. Our results indicate that the optimization process consistently aligns the optimized data with the exact data. In particular, velocity magnitudes showed reduced discrepancies compared to the noisy data, aligning more closely with the exact solutions. The analysis of pressure data revealed a remarkable correspondence between the optimized and exact pressure values, highlighting the potential of this methodology for accurate pressure estimation without any previous knowledge on this quantity. Furthermore, wall shear stress (WSS) analysis demonstrated the effectiveness of our optimization scheme in reducing noise and improving prediction of a relevant indicator determined at the postprocessing level. These findings suggest that our approach can significantly enhance the accuracy of blood flow simulations, ultimately contributing to better diagnostic and therapeutic strategies.
Keywords: Adjoint problem; Data assimilation; Computational fluid dynamics; Navier-Stokes equations; Boundary control (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300324007276
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:493:y:2025:i:c:s0096300324007276
DOI: 10.1016/j.amc.2024.129266
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().