EconPapers    
Economics at your fingertips  
 

Out-of-equilibrium inference of feeding rates through population data from generic consumer-resource stochastic dynamics

José A. Capitán and David Alonso

Applied Mathematics and Computation, 2025, vol. 500, issue C

Abstract: Statistical models are often structurally unidentifiable, because different sets of parameters can lead to equal model outcomes. To be useful for prediction and parameter inference from data, stochastic population models need to be identifiable, this meaning that model parameters can be uniquely inferred from a large number of model observations. In particular, precise estimation of feeding rates in consumer-resource dynamics is crucial, because consumer-resource processes are central in determining biomass transport across ecosystems. Model parameters are usually estimated at stationarity, because in that case model analyses are often easier. In this contribution we analyze the problem of parameter redundancy in a multi-resource consumer-resource model, showing that model identifiability depends on whether the dynamics have reached stationarity or not. To be precise, we: (i) Calculate the steady-state and out-of-equilibrium probability distributions of predator's abundances analytically using generating functions, which allow us to unveil parameter redundancy and carry out proper maximum likelihood estimation. (ii) Conduct in silico experiments by tracking the abundance of consumers that are either searching for or handling prey, data then used for maximum likelihood parameter estimation. (iii) Show that, when model observations are recorded out of equilibrium, feeding parameters are truly identifiable, whereas if sampling is done solely at stationarity, only ratios of rates can be inferred from data (i.e., parameters are redundant). We discuss the implications of our results when inferring parameters of general dynamical models.

Keywords: Stochastic consumer-resource models; Master equation; Model identifiability; Parameter inference; Generating function; Multi-resource Holling type II and III feeding dynamics (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300325001614
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:500:y:2025:i:c:s0096300325001614

DOI: 10.1016/j.amc.2025.129434

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-05-06
Handle: RePEc:eee:apmaco:v:500:y:2025:i:c:s0096300325001614