EconPapers    
Economics at your fingertips  
 

A flexible and efficient multi-agent gas turbine power plant energy management system with economic and environmental constraints

Robin Roche, Lhassane Idoumghar, Siddharth Suryanarayanan, Mounir Daggag, Christian-Anghel Solacolu and Abdellatif Miraoui

Applied Energy, 2013, vol. 101, issue C, 644-654

Abstract: Gas turbine power plants have characteristics that make them well-suited for applications where fast dynamics and high outputs are required, for example to accommodate variable load profiles and intermittent energy sources. However, this flexibility comes at a cost: these plants are much more expensive to operate than other types of power plants. This article proposes a new energy management system that enables a flexible and efficient operation of gas power plants. It is based on a multi-agent system combined with an economic and environmental dispatch algorithm obtained through an optimization algorithm based on differential evolution. Simulation results for a test system based on actual data of a GE 9E turbine show that the system helps reducing operation costs by up 4.7% and NOx emissions by up to 20.5%, and can be used with a large variety of gas power plants, as well as be adapted to evolutions in the plant structure.

Keywords: Economic and environmental dispatch; Energy management; Gas turbine; Multi-agent system; Smart power plant (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261912005235
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:101:y:2013:i:c:p:644-654

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2012.07.011

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:101:y:2013:i:c:p:644-654