EconPapers    
Economics at your fingertips  
 

Effect of masonry material and surface absorptivity on critical thermal mass in insulated building walls

Sami A. Al-Sanea, M.F. Zedan and S.N. Al-Hussain

Applied Energy, 2013, vol. 102, issue C, 1063-1070

Abstract: Effects of type of masonry material and surface absorptivity to solar radiation on critical thermal mass thickness in insulated building walls are investigated for a fixed wall nominal thermal resistance (Rn-value). The concepts of “thermal-mass energy-savings potential” (Δ) and “critical thermal mass thickness” (Lmas,cr), developed in a previous study, are utilized to determine the thermal mass thickness required for a desired percentage energy savings. Transmission loads are calculated under the climatic data of Riyadh, assuming steady periodic conditions, by using a previously validated computer model. Effects of masonry materials are investigated by using solid and hollow concrete blocks, while surface absorptivity (λ) influence is studied for λ=0.4 and 0.2. Walls are considered where thermal mass is located on the inside or on the outside relative to insulation layer. Thermal mass thickness is varied between 0 and 50cm while keeping Rn-value constant. The results show that for a given critical thermal mass thickness, higher energy savings potential is obtained with: (i) walls with solid concrete blocks, (ii) walls with lower surface absorptivity, and (iii) walls with inside thermal mass. Charts are developed for Lmas,cr versus Δ under the different conditions for the benefit of building envelope designers.

Keywords: Thermal mass; Energy savings potential; Insulated building walls; Surface absorptivity (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191200459X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:102:y:2013:i:c:p:1063-1070

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2012.06.016

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:102:y:2013:i:c:p:1063-1070