Adaptation of a flocculent Saccharomyces cerevisiae strain to lignocellulosic inhibitors by cell recycle batch fermentation
Roberto Landaeta,
Germán Aroca,
Fernando Acevedo,
José A. Teixeira and
Solange I. Mussatto
Applied Energy, 2013, vol. 102, issue C, 124-130
Abstract:
The ethanol production from lignocellulosic feedstocks is considered a promising strategy to increase global production of biofuels without impacting food supplies. However, some compounds released during the hydrolysis of lignocellulosic materials are toxic for the microbial metabolism, causing low ethanol yield and productivity during the fermentation. As an attempt to overcome this problem, the present study evaluated the adaptation of a flocculent strain of Saccharomyces cerevisiae (NRRL Y-265) to several inhibitory compounds usually found in lignocellulosic hydrolysates (acetic acid, furfural, hydroxymethylfurfural, vanillin, syringaldehyde, and hydroxybenzoic acid), aiming to minimize their negative effects on yeast metabolism, maximizing the ethanol production as a consequence. Cell recycle batch fermentation (CRBF) was performed during 39 consecutive days, using five different fermentation media with sequential increase in the concentration of inhibitory compounds, simulating the composition of lignocellulosic hydrolysates. This strategy allowed obtaining a yeast strain with increased ethanol volumetric productivity and growth rate (10% and 70% respectively, over parent strain) able to produce ethanol with better results when cultivated in glucose-supplemented steam-exploded eucalyptus hydrolysate.
Keywords: Bioethanol; Saccharomyces cerevisiae; Inhibitors; Adaptation; Cell recycle batch fermentation (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191200493X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:102:y:2013:i:c:p:124-130
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2012.06.048
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().