Energy analysis and thermoeconomic assessment of the closed greenhouse – The largest commercial solar building
Amir Vadiee and
Viktoria Martin
Applied Energy, 2013, vol. 102, issue C, 1256-1266
Abstract:
The closed greenhouse concept has been studied in this paper. The closed greenhouse can be considered as the largest commercial solar building. In principle, it is designed to maximize the utilization of solar energy by use of seasonal storage. In an ideal fully closed greenhouse, there is no ventilation window. Therefore, the excess heat must be removed by other means. In order to utilize the excess heat at a later time, long- and/or short-term thermal storage technology (TES) should be integrated. A theoretical model has been derived to evaluate the performance of various design scenarios. The closed greenhouse is compared with a conventional greenhouse using a case study to guide the energy analysis and verify the model. A new parameter has been defined in this paper in order to compare the performance of the closed greenhouse concept in different configurations – the Surplus Energy Ratio showing the available excess thermal energy that can be stored in the TES system and the annual heating demand of the greenhouse. From the energy analysis it can be concluded that SER is about three in the ideal fully closed greenhouse. Also, there is a large difference in heating demand between the ideal closed and conventional greenhouse configurations Finally, a preliminary thermo-economic study has been assessed in order to investigate the cost feasibility of various closed greenhouse configurations, like ideal closed; semi closed and partly closed conditions.
Keywords: Heat transfer; Energy conservation; Closed greenhouse; Solar commercial building; Sustainable energy management system; Thermal energy storage system (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (27)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261912004965
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:102:y:2013:i:c:p:1256-1266
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2012.06.051
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().