Evaluating shortfalls in mixed-integer programming approaches for the optimal design and dispatch of distributed generation systems
Kristopher A. Pruitt,
Robert J. Braun and
Alexandra M. Newman
Applied Energy, 2013, vol. 102, issue C, 386-398
Abstract:
The distributed generation (DG) of combined heat and power (CHP) for commercial buildings is gaining increased interest, yet real-world installations remain limited. This lack of implementation is due, in part, to the challenging economics associated with volatile utility pricing and potentially high system capital costs. Energy technology application analyses are also faced with insufficient knowledge regarding how to appropriately design (i.e., configure and size) and dispatch (i.e., operate) an integrated CHP system. Existing research efforts to determine a minimum-cost-system design and dispatch do not consider many dynamic performance characteristics of generation and storage technologies. Consequently, we present a mixed-integer nonlinear programming (MINLP) model that prescribes a globally minimum cost system design and dispatch, and that includes off-design hardware performance characteristics for CHP and energy storage that are simplified or not considered in other models. Specifically, we model the maximum turn-down, start up, ramping, and part-load efficiency of power generation technologies, and the time-varying temperature of thermal storage technologies. The consideration of these characteristics can be important in applications for which system capacity, building demand, and/or utility guidelines dictate that the dispatch schedule of the devices varies over time. We demonstrate the impact of neglecting system dynamics by comparing the solution prescribed by a simpler, linear model with that of our MINLP for a case study consisting of a large hotel, located in southern Wisconsin, retrofitted with solid-oxide fuel cells (SOFCs) and a hot water storage tank. The simpler model overestimates the SOFC operational costs and, consequently, underestimates the optimal SOFC capacity by 15%.
Keywords: Optimization; Mixed-integer nonlinear programming; Distributed generation; Combined heat and power; Fuel cells; Building energy (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (49)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261912005521
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:102:y:2013:i:c:p:386-398
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2012.07.030
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().