CFD analysis based parametric study of derating factor for Earth Air Tunnel Heat Exchanger
Rohit Misra,
Vikas Bansal,
Ghanshyam Das Agrawal,
Jyotirmay Mathur and
Tarun K. Aseri
Applied Energy, 2013, vol. 103, issue C, 266-277
Abstract:
Thermal performance of Earth Air Tunnel Heat Exchanger (EATHE) under transient operating conditions has been evaluated for predominantly hot and dry climate of Ajmer (India) using experimental and Computational Fluid Dynamics modeling. Effects of time duration of continuous operation, thermal conductivity of soil pipe diameter and flow velocity on thermal performance of EATHE under transient conditions have been analyzed. Results show that the transient thermal performance of EATHE is significantly dependent on thermal conductivity of the soil and duration of its continuous operation. The analyzed cases have shown the range of derating to be as minimal as 0% to as high as 64%, which if ignored while designing may lead to poor performance of EATHE. Study reveals that the effect of pipe diameter due to prolonged use of EATHE system on its thermal performance is least in case of soil with higher value of thermal conductivity. Results show that the increase in flow velocity leads to deterioration in thermal performance of EATHE system. Under steady state condition, drop of 18.8°C in air temperature is obtained, whereas, under transient conditions cooling of air reduces from 18.7°C to 16.6°C for soil thermal conductivity of 0.52Wm−1K−1, after 24h of continuous operation.
Keywords: Earth Air Tunnel Heat Exchanger; Performance deterioration; Derating factor; Transient analysis (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261912006824
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:103:y:2013:i:c:p:266-277
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2012.09.041
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().