EconPapers    
Economics at your fingertips  
 

Operating condition optimization of corncob hydrothermal conversion for bio-oil production

Jing Gan and Wenqiao Yuan

Applied Energy, 2013, vol. 103, issue C, 350-357

Abstract: The effect of reaction temperature, retention time, biomass content, and catalyst loading on bio-oil yield, carbon content, and carbon recovery of corncob hydrothermal conversion was investigated and optimized via response surface methodology (RSM). The four variables ranged from 280 to 340°C for temperature, 12–48min for retention time, 9–21% for biomass solid content, and 0.76–2.25% for catalyst loading. It was found from RSM modeling that higher bio-oil yield and higher carbon recovery could be achieved at relatively low temperatures and short retention times with high biomass solid contents and moderate alkaline catalyst loadings in the test ranges. A maximum bio-oil yield of 41.3% and maximum carbon recovery of 47.1% were obtained at 280°C, 12min, and 21% biomass solid content with 1.03–1.56% catalyst loading. Bio-oil carbon content was found affected only by the reaction temperature and biomass solid content in the RSM model. Higher temperature and lower biomass solid content were favored. The highest bio-oil carbon content of 74.8% was achieved at 340°C with 9% biomass solid content. The predicted bio-oil yield, carbon content and carbon recovery were in close agreement with validation experiment results, indicating that the RSM models were accurate in designing and optimizing the hydrothermal conversion of corncobs.

Keywords: Bio-oil; Carbon recovery; Corncobs; Hydrothermal conversion; Liquefaction; Response surface methodology (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261912006940
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:103:y:2013:i:c:p:350-357

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2012.09.053

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:103:y:2013:i:c:p:350-357