The selection of volume ratio of two-stage rotary compressor and its effects on air-to-water heat pump with flash tank cycle
Younghwan Ko,
Sangkyoung Park,
Simon Jin,
Byungsoon Kim and
Ji Hwan Jeong
Applied Energy, 2013, vol. 104, issue C, 187-196
Abstract:
A conventional heat pump exhibits performance degradation even though larger heating capacity is needed as the outdoor temperature declines. As a way to prevent the performance degradation, a heat pump with an inverter-driven two-stage rotary compressor and vapor injection (VI) cycle was investigated for an air-to-water heat pump (AWHP) system employing a flash tank. The volume ratio of two cylinder of a two-stage rotary compressor has significant effect on the performance of the AWHP so that it was experimentally investigated. Based on this result, a two-stage rotary compressor designed with an optimized volume ratio was manufactured and incorporated into the AWHP system. It was found that the VI AWHP system improved the heating capacity by 48% and the COP by 36% compared to those values for the conventional AWHP at water temperature of 60°C and ambient temperature of −15°C. This VI AWHP system can be used for cold climate applications.
Keywords: Two-stage rotary compressor; Volume ratio; Vapor injection; Air-to-water heat pump; Flash tank (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261912008148
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:104:y:2013:i:c:p:187-196
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2012.11.021
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().