EconPapers    
Economics at your fingertips  
 

Catalytic activity of Ni3S2 and effects of reactor wall in hydrogen production from water with hydrogen sulphide as a reducer under hydrothermal conditions

Yuanqing Wang, Fangming Jin, Xu Zeng, Cuixiang Ma, Fengwen Wang, Guodong Yao and Zhenzi Jing

Applied Energy, 2013, vol. 104, issue C, 306-309

Abstract: Catalytic activity of Ni3S2 and the effects of reactor wall in the hydrogen production from water were investigated under hydrothermal conditions using hydrogen sulphide (H2S) as a reductant. It was found that Ni3S2 catalysed the hydrogen production from water and may act as a semi-conductor catalyst. In the case of addition of Ni3S2, the time required to achieve the maximum hydrogen yield significantly decreased and the maximum hydrogen yield increased. These results suggest that the Ni3S2 formed as a corrosion product of the reactor wall when using the Hastelloy C-276 lined reactor should play a catalytic role in the hydrogen production. These results could facilitate studies for the synthesis of highly active catalysts for the production of hydrogen under mild conditions.

Keywords: Hydrogen; Nickel sulphide; Hydrothermal reactions; Hydrogen sulphide (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261912008070
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:104:y:2013:i:c:p:306-309

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2012.11.014

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:104:y:2013:i:c:p:306-309