EconPapers    
Economics at your fingertips  
 

A case study on energy consumption and overheating for a UK industrial building with rooflights

Xiaoxin Wang, Christopher Kendrick, Raymond Ogden, Nicholas Walliman and Bousmaha Baiche

Applied Energy, 2013, vol. 104, issue C, 337-344

Abstract: Rooflights have become the common installations for industrial buildings to meet both the human health requirements for natural light and the need to save artificial lighting energy, especially for retail or distribution sheds that have big roof to floor area ratios and limitations of using glazing on side elevations. Since almost all of these buildings normally operate during daytime, an opportunity exists to save lighting energy by fitting automatic artificial lighting control. However, due to solar gains through the rooflights, the buildings are vulnerable to summer overheating. If overheating occurs regularly or over sustained periods, it will lead to the need for mechanical cooling, which inevitably results in more operational energy consumption in addition to the initial installation cost. To remedy this potential problem, natural ventilation through ridge openings is explored in this paper because it consumes almost no extra operational energy. Thermal modelling is therefore implemented with focus on influences of lighting control on energy consumption and effects of natural ventilation on reducing overheating. The modelling results indicate that lighting control can save lighting energy by 70% and the use of both ridge ventilation and lighting control can reduce overheating hours considerably, as internal heat is dissipated through the ridge openings and lighting heat gains are cut. In addition, converted from lighting and heating energy used, the overall CO2 reduction can reach 45% when both lighting control and ridge ventilation are applied. The findings from the study would encourage the use of rooflights for industrial buildings and would provide guidance on how to save operational energy while ensuring the thermal comfort inside the buildings.

Keywords: Thermal modelling; Lighting control; Natural ventilation; Rooflights (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261912007660
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:104:y:2013:i:c:p:337-344

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2012.10.047

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:104:y:2013:i:c:p:337-344