A mixed integer non-linear programming model for tactical value chain optimization of a wood biomass power plant
Nazanin Shabani and
Taraneh Sowlati
Applied Energy, 2013, vol. 104, issue C, 353-361
Abstract:
Forest biomass is one of the renewable sources of energy that has been used for generating electricity. The feasibility and cost of producing electricity from forest biomass depend on long term availability of biomass, its cost and quality, and the cost of collecting, pre-processing, handling, transportation, and storage of forest biomass, in addition to the operating and maintenance costs of the conversion facility. To improve the cost competitiveness of forest biomass for electricity generation, mathematical programming models can be used to manage and optimize its supply chain. In this paper, the supply chain configuration of a typical forest biomass power plant is presented and a dynamic optimization model is developed to maximize the overall value of the supply chain. The model considers biomass procurement, storage, energy production and ash management in an integrated framework at the tactical level. The developed model is a nonlinear mixed integer programming which is solved using the outer approximation algorithm provided in AIMMS software package. It is then applied to optimize the supply chain of a real biomass power plant in Canada. The optimum solution provides more profit compared to the actual profit of the power plant. Different scenarios for maximum available supply and also investment in a new ash recovery system were evaluated and the results were analyzed. The model in particular shows that investment in a new ash recovery system has economic as well as environmental benefits for the power plant.
Keywords: Forest biomass power plant; Renewable energy; Optimization; Mathematical programming; Non-linear mixed integer programming; Supply chain management (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (47)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261912008069
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:104:y:2013:i:c:p:353-361
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2012.11.013
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().