EconPapers    
Economics at your fingertips  
 

Analytical models for the computation and optimization of single and double glazing flat plate solar collectors with normal and small air gap spacing

Alison Subiantoro and Kim Tiow Ooi

Applied Energy, 2013, vol. 104, issue C, 392-399

Abstract: Analytical models for the prediction of the heat loss from the top cover of single and double glazing flat plate solar collectors have been proposed. The models require no iteration to solve and therefore, are easy to use. The models allow the analysis of collectors with very small air gap spacing which was not previously possible. They are, therefore, applicable for cases with Rayleigh numbers ranges from 0 to 106. The comparison between the predictions from the proposed model and the results obtained from a more comprehensive 2-D CFD studies employing ANSYS FLUENT 13 software package shows that the proposed model is able to accurately predict the heat loss coefficients and glass temperatures with discrepancies of less than 9%. It was also found that if the air gap spacings for both the single and the double glazing solar collectors are such that the corresponding Rayleigh number is at the vicinity of the critical value of 1708 (which corresponds to an air gap of about 10mm in this study), there exists a minimum heat loss coefficient. With the optimized design, the water temperature increase is higher by about 14% as compared to that of the base design. These findings pave the way for future optimization of the solar collector designs.

Keywords: Solar energy; Solar thermal; Solar collector; Modeling; Optimization; Energy efficiency (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261912007957
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:104:y:2013:i:c:p:392-399

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2012.11.009

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:104:y:2013:i:c:p:392-399