EconPapers    
Economics at your fingertips  
 

Integration of bioethanol as an in-process material in biorefineries using mass pinch analysis

Elias Martinez-Hernandez, Jhuma Sadhukhan and Grant M. Campbell

Applied Energy, 2013, vol. 104, issue C, 517-526

Abstract: A biorefinery involving internal stream reuse and recycling (including products and co-products) should result in better biomass resource utilisation, leading to a system with increased efficiency, flexibility, profitability and sustainability. To benefit from those advantages, process integration methodologies need to be applied to understand, analyse and design highly integrated biorefineries. A bioethanol integration approach based on mass pinch analysis is presented in this work for the analysis and design of product exchange networks formed in biorefinery pathways featuring a set of processing units (sources and demands) producing or utilising bioethanol. The method is useful to identify system debottleneck opportunities and alternatives for bioethanol network integration that improve utilisation efficiency in biorefineries with added value co-products. This is demonstrated by a case study using a biorefinery producing bioethanol from wheat with arabinoxylan (AX) co-production using bioethanol for AX precipitation. The final integrated bioethanol network design allowed the reduction of bioethanol product utilisation by 94%, avoiding significant revenue losses.

Keywords: Biorefinery; Bioethanol; Pinch analysis; Arabinoxylan (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261912008574
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:104:y:2013:i:c:p:517-526

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2012.11.054

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:104:y:2013:i:c:p:517-526