Simulation of thermal performance of horizontal slinky-loop heat exchangers for ground source heat pumps
Chiew Shan Anthony Chong,
Guohui Gan,
Anne Verhoef,
Raquel Gonzalez Garcia and
Pier Luigi Vidale
Applied Energy, 2013, vol. 104, issue C, 603-610
Abstract:
This paper presents results obtained from a numerical simulation for the horizontal slinky-loop heat exchanger of a ground-source heat pump system. A three-dimensional numerical model was developed and the results of the thermal performance of various heat exchanger configurations are presented. The investigation was carried out on five types of loop pitch (loop spacing), three types of loop diameter, three values of soil thermal properties, and allowing continuous and intermittent operation. Comparison was made for the heat transfer rate, the amount of pipe material needed, as well as excavation work required for the horizontal slinky-loop heat exchanger. The results indicate that system parameters have a significant effect on the thermal performance of the system.
Keywords: Ground-source heat pump; Horizontal slinky-loop heat exchanger (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (32)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261912008744
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:104:y:2013:i:c:p:603-610
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2012.11.069
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().