EconPapers    
Economics at your fingertips  
 

Modeling of TABS-based thermally manageable buildings in Simulink

Peizheng Ma, Lin-Shu Wang and Nianhua Guo

Applied Energy, 2013, vol. 104, issue C, 800 pages

Abstract: Since Willis Carrier’s invention of air conditioning in 1911, we traditionally think about building conditioning in terms of the heating and cooling of a building’s indoor air. A better idea is the heating and cooling of a building’s mass. The latter has been called the radiant method, of which a most attractive strain is the thermally activated building systems (TABS) proposed by Robert Meierhans in 1990s. In this paper, a resistor–capacitor (RC) model is built in Matlab/Simulink for studying the system requirement of a TABS-equipped building-room. Specifically, what is the requirement in the envelope thermal resistance and activated TABS thermal mass of the room so that it is able to keep the room’s indoor operative temperature within the comfort range with its surroundings at neutral mean ambient temperature? Systematic simulations show that at neutral ambient temperature, the room’s manageability requires the correct selection of thermal mass at normal value and thermal resistance within minimum envelope resistance range (MERR). With its surroundings at above neutral ambient temperature, the room with the required mass-envelope combination functions robustly, albeit with a slightly larger operative temperature variation. We introduce the term thermally manageable building, defined as buildings that can be managed with off-peak equipment, either mechanical equipment (e.g., a chiller) or (natural energy gradient driven) low-power equipment (e.g., a cooling tower). Simulation results also show that while the mean operative temperature level is maintained by cooling equipment (mechanical or low-power one), the operative temperature variation is primarily a function of a building’s thermal mass and a building’s envelope thermal resistance and, only to a small extent, a weak function of mean ambient temperature and the diurnal temperature amplitude.

Keywords: Building energy modeling; TABS; Thermally manageable building; Radiant cooling; Thermal mass; Cooling tower (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261912008884
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:104:y:2013:i:c:p:791-800

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2012.12.006

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:104:y:2013:i:c:p:791-800