EconPapers    
Economics at your fingertips  
 

Gaseous and particulate matter emissions of biofuel blends in dual-injection compared to direct-injection and port injection

Ritchie Daniel, Hongming Xu, Chongming Wang, Dave Richardson and Shijin Shuai

Applied Energy, 2013, vol. 105, issue C, 252-261

Abstract: To meet the needs of fuel security and combat the growing concerns of CO2 emissions, the automotive industry is seeking solutions through biofuels. Traditionally, when supplying biofuel blends to the combustion chamber, the blend is mixed externally prior to its injection in one location. This location occurs either before the cylinder (port-fuel injection, PFI), or directly into the cylinder (direct-injection, DI). However, the use of dual-injection allows the in-cylinder blending of two fuels at any blend ratio, when combining the two locations (PFI and DI). This injection strategy offers increased flexibility as the blend ratio can be changed instantaneously according to engine speed and load demand and fuel availability. Previous work by the authors has reported the improved combustion performance of dual-injection with 25% blends (in gasoline) of a new biofuel candidate: 2,5-dimethylfuran (DMF). This current investigation extends the analysis to include the gaseous emissions of various DMF blends (25%, 50% and 75%) from 3.5bar to 8.5bar IMEP and the particulate matter (PM) emissions of similar fraction ethanol blends at a selected condition of 5.5bar IMEP. Compared to DI, dual-injection offers reduced CO and CO2 emissions and comparable HC emissions. The mean PM diameter is decreased and the accumulation mode particles are negligible compared to DI. However, the implication of the higher combustion pressures is an increase in NOx due to reduced charge-cooling.

Keywords: Dual-injection; Direct-injection; 2,5-Dimethylfuran; Ethanol; Particulate Matter (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261912008136
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:105:y:2013:i:c:p:252-261

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2012.11.020

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:105:y:2013:i:c:p:252-261