Constant pressure hydraulic energy storage through a variable area piston hydraulic accumulator
James D. Van de Ven
Applied Energy, 2013, vol. 105, issue C, 262-270
Abstract:
Hydraulic accumulators are used in a variety of applications to minimize the pressure variation in hydraulic circuits and to store energy. Conventional hydraulic accumulators suffer from two major limitations, the hydraulic system pressure varies with the quantity of energy stored and the energy density is significantly lower than other energy domains. In this paper, a novel hydraulic accumulator is presented that uses a piston with an area that varies with stroke to maintain a constant hydraulic system pressure while the gas pressure changes. The variable area piston is sealed with a fabric reinforced rolling diaphragm. In this work, the piston radius profile is developed as a function of the piston displacement and then transformed into a function of the axial contact location between the piston and the diaphragm. The piston profile was solved numerically for a variety of conditions using both transformation methods to illustrate the geometric design trade-offs. Using a variable area gas piston with a fixed cylinder area, the maximum gas volume ratio was 1.8:1. An analysis of the energy density revealed that the constant pressure accumulator provides a 16% improvement in energy density over a conventional accumulator at a volume ratio of 2.71:1 and also exceeds the maximum energy density of a conventional accumulator at the lower volume ratio of 1.8:1. This new promising technology maintains a constant hydraulic system pressure independent of the quantity of energy stored, easing system control and allowing other circuit components to be downsized to meet the same power requirements, while also increases the energy storage density.
Keywords: Hydraulic accumulator; Energy storage; Constant pressure; Rolling diaphragm (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261912009506
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:105:y:2013:i:c:p:262-270
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2012.12.059
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().