Fuel economy optimization of an Atkinson cycle engine using genetic algorithm
Jinxing Zhao and
Min Xu
Applied Energy, 2013, vol. 105, issue C, 335-348
Abstract:
An Atkinson cycle engine with geometrical compression ratio (GCR) of 12.5 has been designed by maximizing fuel economy at full load operating conditions based on the Artificial Neural Network Method [1]. However, the Atkinson cycle engine generally operates at part load conditions especially in the middle to high load range. Optimization of the fuel economy for part load is more important in reducing the total fuel consumption. The Atkinson cycle engine applies the load control strategy that combines the intake valve closure (IVC) timing and electrically throttling control (ETC), which has an impact to the fuel economy. Moreover, the exhaust valve opening (EVO) timing, spark angle (SA) and air–fuel-ratio (AFR) also affect the fuel economy. If calibrating these operating variables over the entire operating range through experiments, the difficulty and cost will become a big issue. A physical model based optimization scheme by coupling MATLAB genetic algorithm (GA) and 1-D GT-Power simulation models of the Atkinson cycle engine are proposed. The GT-Power models were improved to accurately simulate the part load conditions, by calibrating parameters of the combustion and heat transfer sub-models using experimental data taken at various speed–load points covering the entire operating range. The fuel economy was optimized based on the part-load calibrated GT-Power models using the Genetic Algorithm. After each speed–load point was optimized, the control maps for the IVC timings, SA, etc. were obtained. Then these numerically optimized control maps were input into the engine control unit (ECU) as the initial values of the engine calibration, which were further experimentally optimized. The experimental results show that the part-load GT-Power models have sufficient prediction accuracy, with maximal error of 8.5%. After optimized by GA, the fuel economy was greatly improved over the operating range, with the maximal improvement up to 7.67%.
Keywords: Atkinson cycle engine; Fuel economy; Genetic algorithm; Part load modeling; Model based optimization; Calibration (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191200952X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:105:y:2013:i:c:p:335-348
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2012.12.061
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().