A One-compartment direct glucose alkaline fuel cell with methyl viologen as electron mediator
Xianhua Liu,
Miaoqing Hao,
Mengnan Feng,
Lin Zhang,
Yong Zhao,
Xiwen Du and
Guangyi Wang
Applied Energy, 2013, vol. 106, issue C, 176-183
Abstract:
Glucose is abundant, renewable, non-toxic and convenient as a fuel for fuel cells, but current technologies are unavailable for us to directly oxidize it to obtain energy. Fuel cells using enzymes and micro-organisms as catalysts are limited by their extremely low power output and rather short durability. Fuel cells using precious metal catalyst are expensive for large-scale use. In this work, a one-compartment direct glucose alkaline fuel cell has been developed that use methyl viologen (MV) as electron mediator and nickel foam as the anode. The rudimentary fuel cell generates a maximum power density of 0.62mWcm−2, while the maximum current density is 5.03mAcm−2. Electro-catalytic activities of MV and the nickel foam in alkaline conditions were studied by cyclic voltammetry. It is indicated that the high performance of the fuel cell is attributed to the combined use of MV and nickel foam. 13C-NMR and HPLC were used to analyze oxidation products of glucose. The result shows that the principal oxidation products are short-chain organic acids indicating deep oxidation of glucose is achieved.
Keywords: Methyl viologen (MV); Glucose; Fuel cell; Alkaline condition; Air-breathing cathode (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913000846
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:106:y:2013:i:c:p:176-183
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2013.01.073
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().