EconPapers    
Economics at your fingertips  
 

Experimental study on combustion and NOx emissions for a down-fired supercritical boiler with multiple-injection multiple-staging technology without overfire air

Min Kuang, Zhengqi Li, Chunlong Liu and Qunyi Zhu

Applied Energy, 2013, vol. 106, issue C, 254-261

Abstract: A deep-air-staging combustion technology was previously developed to achieve reduction in NOx emissions and to eliminate strongly asymmetric combustion found in down-fired boilers. Recently, one of two down-fired 600MWe supercritical utility boilers using this technology (without applying overfire air) began commercial operations. To understand coal combustion and NOx emissions characteristics within the furnace, full-load industrial-size experiments were performed at different air-staging conditions with measurements taken of gas temperatures in the burner region, gas temperatures and species concentrations in the near wing-wall region, carbon content in fly ash, and NOx emissions. As expected, the furnace performance characterized by relatively timely coal ignition, symmetric combustion, and low levels of carbon in fly ash, developed in the furnace at all three settings. Deepening the air-staging conditions could reduce NOx emissions by one-fifth, but varied slightly carbon in fly ash. In view of the still high NOx production (i.e., 1036mg/m3 at 6% O2), adding an overfire air system which was essentially a part of the technology, was recommended for the boiler to significantly reduce the present NOx emissions.

Keywords: Down-fired boiler; Multiple injection and multiple staging; Industrial-size measurement; Coal combustion; NOx emissions (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913000834
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:106:y:2013:i:c:p:254-261

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2013.01.072

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:106:y:2013:i:c:p:254-261