EconPapers    
Economics at your fingertips  
 

Towards biofuel combustion with an easily extruded clay as a natural catalyst

Zhen-Yu Tian, Tarik Chafik, Mhamed Assebban, Sanae Harti, Naoufal Bahlawane, Patrick Mountapmbeme Kouotou and Katharina Kohse-Höinghaus

Applied Energy, 2013, vol. 107, issue C, 149-156

Abstract: The present work aims to investigate an innovative application of natural clay as a catalyst for biofuel combustion. The mineralogical, chemical, thermal and textural characterizations of the natural clay suggest an intrinsic catalytic potential without any prior treatment. The catalytic performance was studied with respect to the combustion of n-butanol as a representative biofuel using different forms of the natural clay: fine powder, pressed pellets and extruded honeycomb monoliths. No major difference was found among these forms regarding texture, morphology and stability. In terms of performance, this clay proved competitive relative to cobalt oxide spinel, which is one of the most reactive non-noble transition metal oxides. The significant amount of naturally occurring transition metals such as iron and some elements considered as promoters in the clay were proposed to account for the catalytic properties. A systematic investigation of the catalytic performance of the clay as a function of the equivalence ratio and of the total flow rate was performed using gas-phase FTIR spectroscopy. Increase of the equivalence ratio at a fixed flow rate yielded a lower catalytic performance toward n-butanol combustion producing a consequent fraction of carbon monoxide and ethylene. At a constant equivalence ratio of 0.6, the performance of the clay was not affected by increasing the total inlet flow rate up to 30sccm. These findings may initiate the development of a new catalyst for biofuel combustion based on relatively low-cost and abundantly available raw materials such as the natural clay investigated here.

Keywords: Catalytic combustion; Biofuel; n-Butanol; Clay; Honeycomb monolith (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913001335
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:107:y:2013:i:c:p:149-156

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2013.02.025

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:107:y:2013:i:c:p:149-156