EconPapers    
Economics at your fingertips  
 

A comparison between the ECMWF and COSMO Ensemble Prediction Systems applied to short-term wind power forecasting on real data

S. Alessandrini, S. Sperati and P. Pinson

Applied Energy, 2013, vol. 107, issue C, 280 pages

Abstract: Wind power forecasting (WPF) represents a crucial tool to reduce problems of grid integration and to facilitate energy trading. By now it is advantageous to associate a deterministic forecast with a probabilistic one, in order to give to the end-users information about prediction uncertainty together with a single forecast power value for each future time horizon. A comparison between two different ensemble forecasting models, ECMWF EPS (Ensemble Prediction System in use at the European Centre for Medium-Range Weather Forecasts) and COSMO-LEPS (Limited-area Ensemble Prediction System developed within COnsortium for Small-scale MOdelling) applied for power forecasts on a real case in Southern Italy is presented. The approach is based on retrieving meteorological ensemble variables (i.e. wind speed, wind direction), using them to create a power Probability Density Function (PDF) for each 0–72h ahead forecast horizon. A statistical calibration of the ensemble wind speed members based on the use of past wind speed measurements is explained. The two models are compared using common verification indices and diagrams. The higher horizontal resolution model (COSMO-LEPS) shows slightly better performances, especially for lead times from 27 to 48h ahead. For longer lead times the increase in resolution does not seem crucial to obtain better results. A deterministic application using the mean of each ensemble system is also presented and compared with a higher resolution 0–72h ahead power forecast based on the ECMWF deterministic model. It is noticeable that, in a deterministic approach, a higher resolution of the ensemble system can lead to slightly better results that are comparable with those of the high resolution deterministic model.

Keywords: Ensemble forecasting; Short-term wind power forecasting; Statistical calibration; Ensemble verification (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (26)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913001499
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:107:y:2013:i:c:p:271-280

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2013.02.041

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:107:y:2013:i:c:p:271-280