Estimating the daily global solar radiation spatial distribution from diurnal temperature ranges over the Tibetan Plateau in China
Tao Pan,
Shaohong Wu,
Erfu Dai and
Yujie Liu
Applied Energy, 2013, vol. 107, issue C, 384-393
Abstract:
Daily global solar radiation is fundamental to most ecological and biophysical processes because it plays a key role in the local and global energy budget. However, gridded information about the spatial distribution of solar radiation is limited. This study aims to parameterise the Bristow–Campbell model for the daily global solar radiation estimation in the Tibetan Plateau and propose a method to rasterise the daily global solar radiation. Observed daily solar radiation and diurnal temperature data from eleven stations over the Tibetan Plateau during 1971–2010 were used to calibrate and validate the Bristow–Campbell radiation model. The extra-terrestrial radiation and clear sky atmospheric transmittance were calculated on a Geographic Information System (GIS) platform. Results show that the Bristow–Campbell model performs well after adjusting the parameters, the average Pearson’s correlation coefficients (r), Nash–Sutcliffe equation (NSE), ratio of the root mean square error to the standard deviation of measured data (RSR), and root mean-square error (RMSE) of 11 stations are 0.85, 2.81MJm−2day−1, 0.3 and 0.77 respectively. Gridded maximum and minimum average temperature data were obtained using Parameter-elevation Regressions on Independent Slopes Model (PRISM) and validated by the Chinese Ecosystem Research Network (CERN) stations’ data. The spatial daily global solar radiation distribution pattern was estimated and analysed by combining the solar radiation model (Bristow–Campbell model) and meteorological interpolation model (PRISM). Based on the overall results, it can be concluded that a calibrated Bristow–Campbell performs well for the Tibetan Plateau and can provide reasonably accurate global solar radiation estimates. The Bristow–Campbell radiation model coupled with the PRISM is effective in rasterising global solar radiation.
Keywords: Global solar radiation; Spatial distribution; Bristow–Campbell model; PRISM; Tibetan Plateau (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913001712
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:107:y:2013:i:c:p:384-393
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2013.02.053
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().