EconPapers    
Economics at your fingertips  
 

A highly resolved modeling technique to simulate residential power demand

Matteo Muratori, Matthew C. Roberts, Ramteen Sioshansi, Vincenzo Marano and Giorgio Rizzoni

Applied Energy, 2013, vol. 107, issue C, 465-473

Abstract: This paper presents a model to simulate the electricity demand of a single household consisting of multiple individuals. The total consumption is divided into four main categories, namely cold appliances, heating, ventilation, and air conditioning, lighting, and energy consumed by household members’ activities. The first three components are modeled using engineering physically-based models, while the activity patterns of individuals are modeled using a heterogeneous Markov chain. Using data collected by the U.S. Bureau of Labor Statistics, a case study for an average American household is developed. The data are used to conduct an in-sample validation of the modeled activities and a rigorous statistical validation of the predicted electricity demand against metered data is provided. The results show highly realistic patterns that capture annual and diurnal variations, load fluctuations, and diversity between household configuration, location, and size.

Keywords: Energy demand modeling; Household power demand; Occupant behavior; Residential electricity use; Heterogeneous Markov chain; HVAC modeling (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (30)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191300175X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:107:y:2013:i:c:p:465-473

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2013.02.057

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:107:y:2013:i:c:p:465-473