Investigation on water vapor effect on direct sulfation during wet-recycle oxy-coal combustion
Lunbo Duan,
Zhongxiao Jiang,
Xiaoping Chen and
Changsui Zhao
Applied Energy, 2013, vol. 108, issue C, 127 pages
Abstract:
During oxy-coal combustion process, limestone desulfurization may change from indirect into direct sulfation due to the high partial pressure of CO2. When the wet flue gas is recycled, the water vapor will also be enriched in the furnace and affect the desulfurization reactions. In the paper, two limestone sorbents were used to study the effect of water vapor on direct sulfation. Parameters including water vapor concentration, temperature and SO2 concentration were analyzed. Results show that the presence of water vapor has a negligible effect on the direct sulfation during the kinetically-controlled regime, while enhances the calcium conversion during the diffusion-controlled stage. The presence of water vapor promotes the solid-state diffusion of the sulfated product, and sintering of the product layer is intensified. The vacancies in the particles migrate along crystal grain boundaries and through the crystal lattice, resulting in a reverse flow of mass into the pores. The pore structure character of the products sulfated in the presence of water vapor is improved.
Keywords: O2/CO2 atmosphere; Water vapor; Direct sulfation; Pore structure character; X-ray diffraction (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913002183
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:108:y:2013:i:c:p:121-127
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2013.03.022
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().